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ABSTRACT

A class of bilinear estimation problems involving single-degree-of-

freedom rotation is formula*.ed and resolved. Both continuous and discrete

time estimation problems are considered. Error criteria, probability

distributions, and optimal estimates on the circle are studied. An

effective synthesis procedure for continuous time estimation is provided,

and a generalization to estimation on arbitrary abelian Lie groups is

included. An intrinsic difference between the discrete and continuous

problems is discussed, and the complexity of the equations in the discrete

time case is analyzed in this setting. Applications of these results to a

number of practical problems including FM demodulation and frequency

stability are examined.
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1. Introduction

In the past, most optimal estimation problems have been studied in

a vector space setting. While these results lend themselves to simple

solutions in linear systems IIZ and in nonlinear systems with finite

dimensional sensor orbits 3, no effective synthesis procedures for optimal

estimation have been determined for large classes of nonlinear systems.

It is the purpose of this report to introduce an alternative to the

vector space approach in analyzing the properties of nonlinear stochastic

processes. We will study random processes on a different type of space,

namely a differentiable manifold, whizh is the natural domain for certain

j nonlinear problems of practical importance. This approach will be shown

to be useful both in analyzing the properties of certain stochastic processes

and in deriving recursive optimal estimation equations that are easily

implemented (for instance, see the block diagram in Figure 4 and the

associated discussion in subsection 3. 3).

More specifically, we will concern ourselves with the study of random

1processes on the circle, SI, and its extensions to higher dimensions.

Topics such as FM demodulation, frequency stability, and single-degree-

of-freedom gyroscopic analysis are well-known examples in this framework.

It is appropriate to remark that we will use several distinct

representations of the circle interchangeably, depending upon which is

most convenient. A point on the unit circle can be represented by either

the angle 0 c [-Irw) it makes with a fixed reference point on the circle or

by the 2 x 2 orthogonal matrix

Cos sin 0

-sinG 0 Cos 0I



Note that the addition of two angles 0 and 0 modulo 21T corresponds.....

to the multiplication of the two matrices representing the points.

Another representation of S is as the set of complex numbers of

je
length one. Any such number can be uniquely written as e with 0 E [-w,

w), and the relationship with the above representations is obvious.

Finally, there exists a natural projection from R to S, identified

with [-7r, 7T):

x i-o xmodZ" -

As Figure 1 indicates, two points xI and xz are projected onto the same

point if and only if they differ by an integral multiple of 2w (that is,

'o i 0 2nir
i0 ei( + e'). Thus we divide the real numbers into equivalence classes,

x 2n7rIn e Z ,and to each element of S there corresponds a unique

equivalence class, with different points in S corresponding to different

equivalence classes. Thus we can represent S by this set of equivalence

classes, denoted RI/27yZ.

Throughout most of this report the first two representations will be

used. However, in Section 5 we will use the complex number representation,

and in Section 4 we will make use of tie interpretation given by the last

representation above.

i i

Figure 1. Illustrating the Projection Map
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Consider the situation depicted in Figure Z. We have a unit circle

in R with a straight line of infinite length tangent to it.

'-T
X 1-0 BROWNIAN

MCT'ION

Figure 2

We allow the line to perform a or -dimensional Bro vnian motion, fix the

center of the circle, and require that there be no slipping at the point of

tangency. The line induces a rotation of the circle, and, if the line moves

a distance x, the circle rotates x radians, and is thus in a position which

is x mod Zir = 0 radians away i-orm its initial position.

The probability density function for 0 satisfies the classical heat

(jiffusion, Fokker-Planck) equation on the circle:

aPo I a zPO 01, ape (1)

at

with the periodicity condition

po( ,t) = p0 (9 + z2 ,t) (2)

and initial condition
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J

P0 (ý,O) = ( - 7) (3)

where the initial orientation of the circle is v/ radians from some reference

position. The solution of (1), (2), and (3) is widely known, and is given by

the two equivalent e:-,• -..ssions

tth
p(eFt) e (4a)

2 n= -oo

40 5

=~- t/2• cos n(g r? (4b)

n= 1

The density in (4) will be called the folded normal densit We give it this

name for the following reason: if x is a normal random variable with

mean , and variance t y, and if we let 0 x modof ar, then the density for

0, P0' is given by

+do0_0t + dntr -dwt
( )9 e F F (9 ; 7, -Y)

S2' n= -co

4 5
Levyr , and Perrin have done extensive work with this density.

Using rhis concept of "wrapping" a random process around the

circle, we formulate the mathematical model of an observation process

that can be described by a bilinear matrix Ito stochastic equation. Let m

be a random process on R, and define z by

, dz(t) -m~t)dt + dw(t)

where w is a Brownian motion process independent of m. Consider the

associated process
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0(t) = z(t) mod 27 .

Since knowledge of sin & and cos 0 is equivalent to knowledge of 0, we wish

to find an equation for

[cos 0 siZ (t)-I~ 0t sin 0(0]1
Z-sin 0(t) cos 0(t)j

As will be shown

[ -z t mtd~wt
dZ(t) = Z(t) 1(5)

-m(t)dt-dw(t) - dt

1

where the - dt terms are the second order correction terms given by

6 7Ito stochastic calculus' . These terms are precisely what is needed to

insure (in the Ito sense) that Z(t) remains an orthogonal matrix.

If we assume z(O) = 0, we can write

t.
z (t) = m(s)ds + w(t)

and then

t t

[Cos WM: sin w(t) Cos [I m(s)ds] sin [I m(s)dsjZ (t) =t tZ-sinw(t) cos w(t)M [-sin f m(s)ds] cos ms)dsJ

0 0

and, in this form, we see that the disturbance is multiplicative in nature.

In this report we will examine multiplicative noise problems such as

this and will derive estimation equations for them. In Section 2 we will

examine various error criteria for the optimal estimation of random

2.
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variables on the circle. Section 3 deals with continuous time estimation of

a class of stochastic processes on the circle, and Section 4 discusses the

discrete time problem. Applications of this theory to AM and FM

demodulation, optical communication, frequency stability, and estimation

of the orientation of a spinning body are discussed in Section 5. In addition,

an appendix is included, in which the relationship between the discrete

and continuous time problems of Sections 3 and 4 is discussed.

.'z

• ,o,..••,, •,• • .• •-,•..,.•• .••.•i• ,• ,:• ,,,•,.,--i- ••-- • ''• '-•••.•• ..... •,•-,:.•..•.•................•o ......•.•• .... • ..... •.•-



-7-

2. Error Criteria and Optimal Estimates

In the following sections, we will study the properties of certain
stochastic processes on the circle and will derive equations for probability

distributions conditioned on observations. The question of optimal

estimation will be of central importance in Sections 3 and 4. Thus it

( became necessary to study how one uses the knowledge of the probability

distribution of the quantity to be estimated to choose an estimate that gives

the Ibest' performance, as measured by some pre-determined figure of

merit.

In this section, we will present a number of results on the optimal

estimation of random variables taking values on the circle. We assume

that we are given a random variable 0 taking on values in [-vr,7r), with

probability density p(O), which is assumed to be periodic with period 2 7r.

Also, we a ssume that we have an error function 4, also periodic with

A
period Z,, and we wish to choose 6 to minimize

A A

-IT

This is precisely the S analog of the vector space optimal estimation

problem6.

The motivation throughout this section is to provide simple methods

for computing the minimum of the cost criterion, e.(+)(0 - 0)), and theV
A

v-1 e 0 that achieves this minimum. In this light, a number of special

cases (i. e. particular families of densities and error functions) are

considered in detail.

The first subsection presents a basic result, analogous to Sherman's

results1 0 ' 1 1, on optimal estimates for a large class of error criteria, but



for the rather special case of unimodal probability density functions.
However, it is shown that the important folded normal density falls into

this class.

The second subsection deals with the more general estimation
problem, in which the density need not be unimodal and the error function "

may have a more general shape. Fourier series is the basic tool of this

section. The third subsection contains detailed analysis for the special

c of the folded normal density and a linear combination of folded

normal densities.

2. 1 Symmetric Criteria and Unimodal Distributions

We define the standard distance function (Riemannian metric) on the

circle -- i. e. the distance, p . between two points on the circle is the arc-.

length of the shortest path (geodesic line) joining them. If we restrict 0 1

and &2 to take values in the range [-nf), we have

P (Ol, 02) = min (101- 0.1, 2r,- 10,1-0?1)

The class of error criteria we wish to consider is the class of

symmetric, nondecreasing cost functions -- i. e. functions 4:S - R R

which satisfy

0 < ý 0) ,(-0)
27

0 < ptO1,0) < p(O2 ,l)=4O) < (0)

S Some examples of cost criteria satisfying (7) are p (0) = P (O, 0), (1- cos ),

p())2, (1-cos 0)2. We also wish to consider the special class of unimodal,

mode-symmetric probability density functions -- i. e. density functions of

!.
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1?

the form p:S -- [0, co) with a unique maximum at 17, such that

p(n + 0) =p(77 - 0) •0

As the following theorem demonstrates, under these conditions the

mode of the density is the optimal estimate.

Theorem 1: Given an error function 4 that satisfies (7) and a unimodal,

mode-symmetric probability density function p, then

where p has its maximum at i9.

Proof: The theorem follows immediately from results on similarly

ordered functions and the rearrangement inequalities. The basic result

for real valued functions defined on R is contained in Hardy, Littlewood
and Polya8 (th. 378) and Szego and Polya9 (p. 183). The result for S

is obtained by making only minor changes in these proofs. U

We remark that from the symmetry of the problem, + has its global

maximum at 7T and p has its global minimum at il + jr. Thus

(0 -17+-r+))> 2 ((O-a)) Va.

It should be noted that Theorem 1 is the S1 analog of a result of

Sherman1 0 1 1  Note thai the samc result is true if a probability density

doesn't exist, but the probability measure is unimodal at, and symmetric

about some point n3. Here we define these concepts as follo-us: let 0 be

a random variable on S and define the distribution function F: [-7T, •i--

[0, 1 by

I •.F(a) =Pr(O c [-7r,uj).
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Then F is Luximodal at, and symmetric about 0 if it is convex for

a 4 [-7r, 0), and if

F(a) I - F(-a)

at each continuity point of F (see ref. 10).

In the continuous time problem discussed in Section 3 and the discrete

time problem of Section 4, the folded normal distribution will play an

important role, and for this density we have the following result which

shows that Theorem 1 holds for the folded normal density.

Theorem 2: The folded normal density

+. (O+2ni-77) 2

F(;,) 1 -' 
2'v

S~n--co - e

(8)

+ -_n y/2 (- Z• • ecos n(O - ,)

n= 1

is unimodal with mode at 0 7 z and is symmetric about il.

Proof: Since cos < 1, the second form of F in (8) yields

O 2
-1 __ e-n Y/2 F(r0;17, Y)

n--I
Thus F has its global maximum at 0 = 77.

Since F(0, t7, y) = F(0 - 1 ; 0, y), -we need only show that F(; 0.y) is

symmetric about 0 and monotone decreasing as p (0,0) increases.

Symmetry is obvious (cos nO cos n(-O)), and nionotonicity will follow if

we can show

81?
(0. 0, Y) < 0 0 C (0,jr) (9al

.4X



S(0; 0,Y) > 0 0 (9b)

We now remark that the properties of F(O, 0, y) have been studied

extensively, since it is a theta function. See refs. 12 and 13 for dis-

cussions of some properties of theta functions. Using the notation of ref.

12, pp. 2, 42, we have

F(0; 0, -) = 04 •

k (l1 + 2qZnlcos 0 +q4n-2 (10)I ~n=1

where

q =

and 1n

n= 1

. .. Using the fact that F > 0 and the form of F given by (10), we

have

-- Zn- I;,- sin.

F(0: 0, Y) (I + zqn-cos 0 + q

It is easily seen that the term in square brackets on the right hand side of

(11) is positive for all values of 0 and thus (9) is correct. U

Some work along these lines has been done by Perrin 5. See ref. 15

for discussions of other relevant properties of theta functions, hypergeometric

.- __-i.



"functions, Legendre polynomials, and Tchebycheff polynomials.

Note that the symmetry requirements of Theorem 1 are necessary.

For instance, if ý is not symmetric, the mode of the density need not hc

the optimal estimate even if all the other assumptions of Theorem 1 do

hold. As an example, consider the function 4: S1 - R R

0 0<0< V

J,2'~02
i< -<0 < 0,I l 7T<L<

Suppose our distribution is the folded normal centered at 0. Then it can be

shown that the mode, 0, is not the optimal estimate.
, ,•

"2. 2 Optimal Estimation Using Fourier Series

If we do not have a unimodal distribution or symmetric cost criteria

that increases away from 0, Theorem 1 doesn't apply, but, with the aid of

Fourier series, we can still do some useful analysis. We assume that our

probability density is give-i in Fourier series form

p{O) = + 01 a sin nO + b cos nO
27T n n

n=1

as is our error utuction

00
•1. =do c cn sin nO + d n cos nO

n-.

AA
Our problem is to choose 0 to minimize E((0 -0)). A simple

computation yields
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A AA
d (0)-1 = d 7 + n (a n(C cos n0+ dn sinnO)

n= 1

A nA)
bn(dn cos no - c sin no(12)

Thus, necessary conditions for a local minimum are

d

000
d~ •I4d0-0)1 = 0 =="(3

A AA

S{nan[dncos nO -cn sin nO]-nbn[dn sin nO+ cn cosn0/ = 0

n= 1

d--. 8+ - 0*)) > 0 ==
do

OD

S anl n[dn sin nJ + cn cos nO] + nb[c n n& -d cos nO] 0

n= 1

(14)

Solutions of (13) and (14) are candidates for the optimal estimate.

Explicit solution of (13) and (14) is possible only for certain error

functions. F:r example, suppose we consider the function

= 1 -cosO

Then d = 1, d1  -1, and all other Fourier coefficients are 0. Then
0

e1 10-011 = 1 - r(aI sin0 +b 1 cos 0) (15)

and equations (13) and (14) become

AA
a1 cos 0- b sine 0 (16)

NIN '4
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a1 sin0 + b1 cos 0 > 0 (17)

If a1 = b 0, g(ýi(0 -0)) is independent of 06". In any other case, there

are two inequivalent solutions to (16), where two solutions are considered

equivalent if they differ by a multiple of 277. The two solutions are

0 = tanl(a1 /bl), tan-(al/bl) + ff

where tan -:[-oo, col -- 4 [-77/2,T/2]. Examination of (15) and (17) yields a

method for choosing the proper solution:

a1 > 0, b, > 0 = choose solution in first quadrant

a, 0, b, < 0 == choose solution in second quadrant

a1 < 0, bI < 0 ===' choose solution in third quadrant

a1 < 0, b > 0 = choose solution in fourth quadrant.

Witil . a choices, it is easy to see that

a
A 1

sin0
0

A b
cos 0  1

a 2 + b
1 1

and

e= 1-7i7 a +b , (18)
01 1

A

where 00 is the optimal value.

Thus, in this case, we can explicitly solve the estimation problem in

terms of the first mode Fourier coefficients. Note that the higher modes

21
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play no role in this particular case, but also note that has some

motivation from standard vector space theory, in that for small values of

0,

(O) : -cos 0 1

Another possible error function, one that involves the first and

second modes of the density, is

1 1 -cos 01 2 = - Z cos 0 +-cos 20

Using the same type of approach as before, one can reduce the problem of

finding the optimal estimate to the solution of a cu irtic polynomial equation

and the calculation of several functions -- a prccedure that can be done

easily by computer. However, the complexity, even when we just add in

the second mode, is such that no closed form for the optimal error in terms

of the Fourier coefficients is available.

As can be seen, the error analysis becomes increasingly more

difficult as the number of nonzero Fourier coefficients increases. For

2example, direct application of these ideas if 4= p or p , where p is

the Riemannian metri'c on S (actually p (0) p (0, yields extremely
complicated equations. However, the behavior of the Fourier

cffcetn
coefficients for these two examples suggests truncating the series and

applying techniques such as those used in the analysis for (1 - cos 0) and

2(I - cos 0)

However, for these special functions we can use a different method

2in trying to find the optimal estimate. Consider the function p We

have the equation



A

p (0) < 0 <

Thus, if our probability density is p(O),

A

P-2 A 7f+O A
69 (p (9-0)) (e- 0) plO) dO

Using Leibnitz's rule and the periodicity of p, we have the following

necessary conditions for optimality

d 2 A

d (P 2(0 -)) = 20-2 J 0 p(O) dO =0 (19)

and

2
* d 2 A

d- 4(p (0-0)) = Z-4rp(O + 7) > 0 (20)

Equations (19) and (20) offer an alternate method for solving for 90. Note that

equation (19) resembles the necessary condition for the least squares
I'

estimate on RI. In that case

+00
x 0 (x) xp(x)dy,

-lo

where p(x) is the density function. However, in this case, essentially

because of the topological difference between S and R1 the integral

0 p(O)dO

"TT +0 o

A

is not independent of 0, and thus cannot be called e'(0).
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2. 3 The Folded Normal Density and Its Linear Combinations

As will be seen in the next two sections, two types of probability

densities are of great importance. The first of these is the folded normal

density, F(O; n, y), and the second is a linear combination of such

densities

p(O) = cnFIO;T,' 1 n) (21)

(O C n F (;n
n= 1

n -1 n
It should be noted that it has been shown3 that the .set of densities given by

(21) with only finitely many nonzero cn's is dense in L 1(- ,r), and this is

still true if all the -y's are equal to some fixed y. In this section we do

not require that only finitely many cn's be unequal to zero. The reason forn

this will be seen in Section 4.

For the case where our density p(O) is a single foldect normal

density, F(8; n, y), we know that the optimal estimate for any function

satisfying (7) is the mode, Ti. However, for this special density, we can

say a great deal more. Let us consider a more general class of error

functions. We remove the symmetry requirement but still require that

be increasing on [0,7r] and decreasing on [-7r, 0]. For such a ý. the mode

.• need not be the optimal estimate, however for this discussion we will

take it as our estimate. The following theorem reveals an important

property of the error 4 (+(0 - ,))2

Theorem 3: For 4 satisfying the above requirement, and p(O) =F(1;Tiy),

I "• ' • ••• :'-Y • • ' i •.. .. • -- ... • ...... • --.
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t?((•- rj)) is an increasing function of the variance, y -- that is

d -( 77O_,)) > 0

Proof: Writing

d+ I• c sin nO + d cos n

n- 1

and using the results on Fourier series analysis,

•. -n2•/
•((-•)=do + and e (23)

n= I

but we get the same error if we compute r(i(O - Yi)), where 4' is the

function satisfying (7) defined by

.•() ½ (,,() + +l(-0))

Thus, it is enough to prove the theorem for $ satisfying (7). In this

case 17 is the optimal estimate and

( - ?) f+ !(0 - n)F(O, rl, -.),dO

_f ý(O)Fle, 0, -y)dO

S2 (O)F(e; 0,y)dO

0V

Then, (2V) will hold if

(0) a F(0O0,-y)dO > 0

Q0
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Suppose we can show that there exists 00 c [0,7r] such that

- EO(0;O,Y) < 0 0 [0, 0O)

F(O 0 ; O,-Y) =0

SF(O;0,-Y) > 0 0 E(o0 0 ,7T

Then, since

() _+4(oo) 0 C [0,001

+(o1 _> c1o [Oo0,] 7T
- '0'

we have

*(0) - F(O; 0, y)dO > 0)F(O; 0, )dO

=(Oo) ) 0

and we get a strict inequality if 4 is not a ccastant.

Now it is easy to see that

-.- F(O;0,Y) F(0; 0, y)

and the theorem will be proved once we prove the following lemma, which

yields more information about the shape of the folded normal density.

Lemma 1: For an arbitrary but fixed value of y > 0, there exists

0 c [0, .] such that

I



2

2 F(O;O,y) < 0 0 [0,Oo)

--- (0 0 ;0,Y) 080 2

2
F(0;0,•) > 0 0 E (0 0 ,17]

that is, F has a unique inflection point (at 0) on [0,r].

Proof: We use the form of F(O;0,y) given in equation (10). We compute

2
2 z

- -AcosO +B sin2 0
F

0o Zn-ISA 1" 2q
n-i (1+?qn- 1 cos0+q4n-

4g2(r~+m- 1)B 4q~l'm1

Zn- 1 4n-2& Zm-2 4m-Z
(1+2q cos 0+ q )(1+2q cos 9+ q )

and then a simple computation yields

2

0 F-0; 0,,Y) < 0 0 77

and
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82

F 20

These inequalities imply that, there is a 0 E (0, 7) such that
920

SF(0
0 ;0, y) = 0. Then for 00 < 01 < 7//

SF(O
1 ;O , Y ) Z F (O0 ;0 , Y )CIO > 802 0

F(O l; O,0 t F(O 0; O, ")

or

SF(91; 0, -) > 0

and the lemma and the theorem are proved. i

Note that by symmetry we have that F has a unique inflection point at

0 0 on the interval [-IT, 0].

Theorem 3 tells us that the intuitive notion that we "have more

accurate information" for smaller values of j can be made precise.

Also, this theorem implies another result, which is the S analog of a

problem treated by J. L. Brown1 4 . The problem treated in ref. 14 is that

of finding the optimal linear filter minimizing an asymmetric error criteria

on R that decreases on (-oD,0] and increases on [0, oo). The result is

that the optimal linear filter is the minimum variance filter, and the proof

essentially consists of showing that the error is an increasing function of

the variance. Theorem 3 clearly implies an S' analog of this result.

Some examples cf cost criteria satisfying (7) and the associated

optimal costs when the density is folded-normal will be given in Section 3.



For the case in which p(O) is given by (21), the situation is

somewhat different and much more complicated, since we no longer have

a unimodal probability density. For this case, we will examine the

optimal estimation problem for two error functions, l-cos 0 and p (0).

As discussed in subsection 2. 2, in trying to minimize E(l-cos (0-0))

with respect to .3, we need only know the lowest mode Fourier coefficients,

a and b In this case
1 Y

0, oo e"3n/2

a c- -cn sin n

n=l

bI=e•n/cncos nupnh

n=l
A

and (assuming a 1 and bI are not both zero) the optimal estimate 0 is

either tan-1 al/b 1 or tan- 1 al/b1 + i, depending upon the signs of a 1

and b In any case, the optimal cost is given by

I'I
1 ^ -'•n/Z

E(l-cosUO-U 0 )) 1 - cn e sin ]n +

In:- I
YnZ1/2 (4

cn e-•n/2 cos 17n (24)

In general, this optimal error is not an increasing function of each of the

variances -n' individually. However, if all of the variances equal some

value y, it is easy to see that the optimal error is an increasing function

of -Y.

S7.I
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In the case of p 2(0), we recall from subsection 2. 2 that it was

necessary to evaluate

7T+a
0 p(O) dO

as a function of a. For p a folded normal density, F(O; 1, y), we have

SVa. +0a (2k+l)7r

J 0Op(Li)dO r-ZkiT f N(0;17 -a, N)dO (25)
k=-oD (2k-l1)r

where N is the normal density. The second term on the right-hand side

of (25) involves various values of the error function, erf, and can be

tabulated as a function of il -a and -y. Then, if we call this term

g(, -a, -y), in the case where p(O) is given by (21), necessary conditions

for the optimal estimate are

0 = n nn -g(770n-OYn (26)

n= 1

OD

1 - 2- c FI 00 +T, ) _> 0 (27)

n= 1

There does not appear to be a simple formula for the optimal cost, nor

is it clear whether or not the optimal cost is a monotone increasing

functions of the -y or of -y, in the case where all of the y N.

i4
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3. Continuous Time Estimation

A signal process and an observation process, taking values on S1,

will be formulated in terms of bilinear Ito matrix differential equations.

The conditional probability distribution of the signal, given observations

over a certain period of time,will be evaluated. Recui-sive computational

schemes for optimal estimation (filtering, smoothing, and prediction), with

respect to the error criteria defined in the previous section, will be
S1

derived. In fact it will be shown that optimal estimates on S can be

obtained recursively by the use of an ordinary vector space estimator

together with a nonlinear preprocessor and a nonlinear postprocessor, as

illustrated in Fig. 4. Multichann,-! estimation on abelian Lie groups will

be examined. Examples illustrating the optimal estimation procedure are

given at the end of this section.

The circle group, S , can be identified as the multiplication group

of 2 x 2 orthogonal matrices of determinant +1. Any element of this

group has the form

cc's 0 sin 0

-sin cos 0

and, for 0 near zero, we have the first order approximation

Cos 0 sin 0 1 0 1 [

-sin 0 cos O 0 1 1 0

The matrix

R 1 0

Oj•
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is called the infinitesimal rotation and we have

[ cosO sin =
I ] =exp, R()• -sin 0 Cos0

For those familiar with the theory of Lie groupsi S is a one

dimensional abelian Lie group, with the 2 x 2 orthogonal matrices a

representation of the group. The infinitesimal rotation R forms a basis

for the Lie algebra, L(S1), of S The Lie algebra and Lie group are

related by the exponential map

exp (A) = n! A L(SI)

n=0

and the logarithm map

0o

log (B) 1 (-1 )n-I (B-I)n B ES 1 , IB-II< 1

n= 1

3. 1 Signal Processes and Observation Processes

It has been shown [21, p. 269] that the circular Brownian motion on

S can be constructed by taking the projection modulo ZTr of the standard

1-dimensional Brownian motion onto the unit circle S1. This method will

now be used to construct a conti...us signal process on S and to

formulate the mathematical model of a sensor (an observation process)

to be used in this report.

We will adopt the following notation

(fk4d, P) a probability space

s -a positive real number

C.- -
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Cl the family of real-valued continuous functions, a, on

[0, s) such that a(0) = 0
s

I'•S = the Borel a-field of C1

CZ = the family of 2 x 2 orthogonal-matrix-valued continuous

functions, A, on [0, s] such that A(0) = I, the identity

matrix

= the Borel a--field of C2

s anIpeSc s e te s d n t

Lower case letters denote elements in C and upper case letters denote

elements in C .

S 5Let J:Cs C be defined by

[cos a(t) sin a(t)1
(J(a))(t) = exp(a(t)R) = (28)

[-sin a(t) cos a(t)

for a c Cs and t E [0, s]. It is easily seen that J is •l-measurable

and bijective. This bijective operator will play a key role in this section.

Intuitively, J can best be illustrated by Fig. 3. A point on the unit circle,

S can be represented by either the angle 0 c [-7r,r) it makes with a

fixed radial axis or the Z x 2 orthogonal matrix exp(RO). Therefore, in
s ^P

the first representation, C2 is the family of piecewise continuous functions

6(t). such that at any point of discontinuity the right hand limit cf

0 is + 7, while the left-hand limit is 7 T (see Fig. 3).
R1

Each continuous curve a(t) on R gives rise to one and only one

piecewise continuous curve 0(t) lying between 7r and -T, of which the

continuous segments are obtained by translating the corresponding

segments of a(t) an integral number of multiples of 27 (see Fig. 3).
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I

-Z OY 11 -1

oI / I I

Il ý 0(t) I Gu0()

Figure 3

Conversely, each piecewise continuous curve in C. gives rise to one and

-only one continuous curve taking values on R I which is obtained sinyk;,. by

piecing the continuous segments together. This intuitive observation

illustrates the bijective property of the operatcr J. Thus a continuous
S1

random signal process on S which is described by an d-measurable
s

function X:2-- Cs corresponds to a continuous random signal process
1I s sc

on R which is described by an dff-measurable function x:f---t C such

that

Xlt) = (Jlxlllt) , t C [0, s] 12(79)

s
We now define a random process z:Q---) C1 by the K. Ito random

differential equation,

dz(t) = m(x(t), t) dt + ql/2 dw(t), z(O) = (30)

dztwt. z0 ,(0
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where m:1 R 1 - R1 is Borel-measurable, q:R 1 -- R1 is positive

and measurable and w is the standard Brownian motion on 1Q,.d, P),in-

deperz-le.t of x. Let Z: -- C be defined by

Zlt) = Jlz)llt) . (31)

Applying the Ito differentiation rule, we obtain the following Ito matrix

differential equation:

m_ M) 0 dwr(t)]21dZ(t) = Z(t) dt + Z(t) (32)

m t - -- dw (t)

Z(O) = I,

where m(t) '_ m(x(t), t) and the diagonal terms 2(t) are the second order

correction terms which keep Z on the circle. This equation is the

mathematical model of the sensor to be used. We note that the input,

x(t) to the sensor is not the dynamical state X(t) of the rotational signal

process on the circle, but rather the angle the rotational process has

swept.

The physical motivation for this sensor model comes from the fact

that in observing a rotational proce3s (for instance a gyroscope recording

"rotation about a fixed axis) our measurement contains information on the

total rotation, x(t), not just the orientation, X(t). In some applications,

such as the gyro problem mentioned above, we wish to extract knowledge

of orientation from knowledge of rotation, so it is proper to regard X(t)

as the signal process. However, in other applications, such as FM de-

modulation, our interest centers on the x process, and in these cases, we

. . . . .. .. . . . .. .. . . .
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may regard x as the signal.

3. 2 Conditional Probability Distributions

In this subsection, we will derive equations for the conditional

probability distribution of the signal process given observations over some

time period. The approach of this section is measure-theoretic in nature,

and the major results are summarized in the statements of Lemma 2,

Theorem 4, and its two corollaries.

Let us denote tz(T'), - E [0, t]I and IZ(T), -T [0, t]j by zt

t t tand Z respectively. We note that Z = J(z ). Since J is bijective from

t t -subfield of .d( generated by z is the same as thatC1 to C2.th istesmasht

generated by Zt. In other words, the information carried by z and Z

is the sarme. That o--subfield will be denoted by dz The a-subfield of

.4 whic'. is generated by Xx - X(M) (the subscripts X, s,t denote that the

prcc-sses are evaluated at these times.) will be denoted by Wx"

Let P be the conditional probability measure on Q,,d givenxz

otz' defined by Pxz(Az) P(Aki)(w0). for A Ed' w eg. Let Pzx

be the conditional prol-ability measure on (,-tz) given ' defined bx

Px(Bw1 ) = P(BI.4)(w1), for B 4E,4t, W c Q The restrictions of P to

tand d are denoted by P and P , respectively. Let 1i and ýw•z an x ar deoe by wz

be the induced measures on (C ,X1) by z and wt respectively. Define

the conditional measure pi on (C,. l), given X., by ý,zx(B,w 1 )

P(z-l(B) ()t),for B cI, W C

It is known (ref. 15) that tzx I w % 1i where : denotes

equivalence of measures, and
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d.zx t, X), ox (33)

(t x[Aw

d[0]

where 6x means taking the average over x and

0 exp (I -w2,dT + (--) d9 ( (0)) (35)

where fdenotes an Ito integral.

fz

Hence

d dtL x (tz. 49(0tlx× = x0(•)) (
(zz (WX Xl) =W 1 k~)) = - (Ot)5

Sdz dbz 0()
x

where

ti 0 - exp (-M T (7)d- + (,r) dz(T:wl)) (37)

dP
We note that d (wZ, wl) is dl xg -measurable. Applying a generaldp z dx-

Bayes rule from ref. 16, we obtain V

dP dP
xz zx

dP (WI'wZ) = dP (WzL' 1) (38)
x 71

Let us denote the family of 2 x 2 orthogonal matrices by M 0 . The

set of induced Borel sets is denoted by "10" Let vz be the conditional

measure on (Mo1.00) given d,4, defined by vxz(A,wZ) P(Xý z

* '3- .. ~ .$,s~-w - - -- ~-- -
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for A E ., cU £. Let v be the measure on (M0,.W0)induced by X.

Then it is easily seen that

dvxz dP (ot1x Xx(wl)).. 2.(Xw),zt(w02 )) = .•.w1 w) ~ t)(9(Xk (Wo 1 ) (W xz (xi•2 x (39)

x x &(0t)

where 0 is defined by (37). Summarizing what has been shown, we have

the following lemma.

Lemma 2: Consider the observation process described by (32). The
t

conditional probability measure for the signal XX given the observation Zt

"Xz, is then absolutely continuous with respect to v the a priori measure
Z~ C~and XE•MO

for Xkand, for Zt E C a

.dv (X, Zt) =1(40)

dvtx 'ex(Ot)

where

0t exp M (7)dT + M (T) [Z'(T)dZ(T)]I2) (41)

[Z'(T)dZ(T)]1 2 = [1,0] Z'(T)dZ(T) 1(42)

If the density function of sx exists and is denoted by p 1"1, then it

follows from Lemumna 1 that the density function p Zt) of V exists and

and can be expressed as follows:

e (at Ix, = X)P2 (X)
p~X(x Z t) = (43)

•x(t
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t %1

where 0t is defined by (41). Let x R be defined by exp Rx- X and

-fT < x < 7r. Then by simple calculations,

p ((XtIx.= x+Zkir, k=l,,...) p xX)

xx
px(Xl zt) _•(t

o e (Ot x(N) x+ Zk7T) P (x+ Zkf)x x
I~e• 144)

- 4~~ (0 t) (4
k=-co x

where denotes the density function of x(X) . This completes the

proof of the following theorem.

Theorem 4: Consider the observation process described by (32). If the

density function p of X(X) exists, then the conditional density function

Px ( z) exists and can be expressed as follows

00 cO .6xl(Ot [ x()).x+ZkTr)px Ix+Zku)

p (XZ tx p °x = Z tx (0t)

x x

(45)

where 0t is defined by (41), p denotes the density function of x(X) and
xK

xis defined by expRx-- X and -_T <x< 7.

It is appropriate to remark that one can easily derive the stochastic

partial differential equation for the conditional density p x (X Zt) using

Theorem 4 and the well-known equation (refs. 19, 20) for px (x+2kT I z)
-ao < k < co. For economy of space, this equation will not be displayed.

However we remark that when m(x, t) is periodic in x with period 27', the

equation is in a form similar to the Stratonovich-Kushner equation with

-Al

!A
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p replaced by px

Using Theorem 4 and the well-known fact (refs. 17, 18) that the

"smoothed and the predicted densities can be expressed explicitly in terms

of filtering, we can easily obtain the following two corollaries.

Corollary 1: The conditional smoothed density pt (XIZt), for to< X < t,

may be expressed in terms of the conditional filtered density as follows:

-. ~f,.a CL) a• Is s

p(x1z) = ( p x+2k7T I Z-)exp q~s)dI q~sJ(d
S! k=-u•(46)

where x is definedby expRx= X and -. < <x<7r andJA
dI s [Z'(s)dZ(s)]iz - A(s)ds (47)

a = X) A (S) (48)
s

M•(S) = 9(m(s) I z) (49)

M(s-x, X) = (9(m(s)IZ5 , I = x) (50)

Corollary 2? Let X be a Markov process with given transition density

p(X x(t) ). The conditional predicted density px (X Izt), for to < t < K

may be expressed in terms of the conditional filtered density as follows:

+OD

Px)(X zt) = f px (X x(t)- g)Pt (g Zt)dg (51)
x t

J r
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3.3 Optimal Estimation

In the previous subsection, the conditional probability distributions

were studied. A variety of estimation problems may be studied based on

those conditional distributions. However, some estimation problems on the

circle can be directly solved by using results in vector-space estimation

theory. In this subsection, the v,.ll-established linear optimal estimation

theory will be used to deduce recursive equations for optimal estimation on

S and thereby illustrate the approach.

"The estimation problem which we will mainly be concerned with in

this subsection is that of constructing a 2 x 2 orthogonal random matrix

A t
X(X It) as a •l'-measurable functional of Z such that for a symmetric

cost function 4 defined by eq. (7),the following inequality holds for all

•t-measurable 2 x 2 orthogonal random matrices M:
z

40 (t(X(X), X(X It))! zt) < e(t(X(X), M) I zt) (52)

in which t(Xl,X 2 ) . +(0), 0 being defined by exp X 1 Xll and

-v <0 < 7T(i.e. 0 is the angle betweenX 1 and XZ).

We have seen, at the beginning of this section, that a continuous
S1

random process X on S can be identified with a continuous random process
.1

x on R via the bijective mapping X = J(x). We now construct a signal
S1

process X on S by injecting a linear diffusion x into S1, x satisfying

dx(t) - a(t)x(t) dt + bl!2(t) dv(t), x(C) = 0 (53)

where b(t) > O, V t c T, and v is a standard Brownian motion, independent

of w, the observational noise. Applying the stochastic differentiation rule,

we obtain the following stochastic differential equation for our signal jj
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process X J):

t t
1 b(t)X(t)dt 0" I 2a(T)dr)bl(s)dv(s)]dtd.X(t) = - -• + X)t)Rtadt)+ (exp.,TuIi

1/2 (4
+ bl(t)dv(t)l (54)

X(O) 1

t t '
where we note that x(t) = (exp fa(T)d)b (s)dv(s).

The observation process to be used in this subsection is taken to be Z,

satisfying the stochastic differential equation:

q(t) c(t)x(t) 0 dw (t)1

dZ(t) = Z(t) dt + Z(t)
-c tx(t) q--wt

(55)

Z(0) = I

As shown in subsection 3. 2., Z can be identified with z J (Z) satisfying

dz(t) c(t)x(t)dt + ql/2(t)dw(t) (56)

z(0) = 0

Note that the equations for X and Z are both bilinear in form. Moreover,

t t
z and Z generate the same cr-subfield •d in (RA, P). Hence

W(x(O) is both afl-measurable functional fl of zt and a ,32-measurable

functional f of Zt, and

f 2 (zt) = f 1 (J-l(zt)) . (57)

A t tt
Let *xIt and x(X It) denote fl(zt) = 9(x(X) z) and f.(zt) - g(x(X)Z t)

respectively.

41

S~a.. ~ c-- - - .. ~sl.Jz 5
.. LJ' .44
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We will first study the filtering problem, where a- = t. Then the

Kalman-Bucy linear filtering theory yields immediately

ditit a(t)t dt +Kt)c(t)q (t) (d Z c(t) tdt) (58)i t ( t)-(

x 010 0

2 2k(t) 2 a(t)K(t) - c (t)q (t)K (t) + b(t) (59)

K(0) 0

In view of (57), we obtain the following lemma, which not only leads to the

solution of the above stated filtering problem but also applies directly to

optimal frequency demodulation (see Section 5).

Lemma 3: Let the stochastic process (54) be the signal process and the

stochastic process (55) be the observation process. Then the filtering

equations are

dC(tIt) = alt)Xlt~t)dt + K(t)c(t)q- (t) ([Z'(t)dZ(t)l2 - c(t)^(tlt)dt)

(60)
x(jOO) ; 0

2 -l 2k(t) = 2 a(t)K(t) -c (t)q (t)K (t) + b(t) (61)

K(0) = 0

and the conditional probability density is given by

(xIZt) exp [- (x -(62)Pt VT,, -(t )tt)2 12

in view of Theorem 4, we see that p (XfZt) is a folded normal
ý t

density. By Theorem 2, it follows that Px (XI Z ) is unimodal with mode

at exp [l(tIt)Rl and is symmetric about it. We may now conclude from
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Theorem 1 that for a cost function defined by (7), 1

49l0(X(t), exp[t(t It)R Zt) < 9l0lXlt), M)I Zt 163)

for any .4 -measurable 2 x 2-dimensional orthogonal random matrix M.z
Since exp[x(t t)RI is easily seen to be a l.-measurable functional of Zt,

it follows that the optimal estimate of our signal process is

X(tjt) = exp [ý(tit)R] (64) 4

Differentiating this with respect to t yields

^ 1 2 1 A )^t 2 -
dX(tjt) = -K (t)c2(t)q (t)Xlt~t~t+X(tft)R((a(t) - K(t)c (t)q- (t))

22

(exp (a(T) - K(T)c (T)q- (T))dT)K(s)c(s)q-l (s)[ZI(t)dZ(t)iz dt

+ K(t)c(t)q- (t)[Z'(t)dZ(t)]l2) (65)

Summarizing what has been shown, we obtain the following theorem.

Theorem 5: If the signal process X and the observation process Z on

S1 satisfy the following stochastic differential equations:

dX(t) - - b(t) X(t) dt + X(t)R(a(t) (exp alTld7)blls)dvls) dt

+ bl/2(t-)dv(t)) (66)X lO' = I l°
12

gCt X'(s)dX~s

dZ(t) = Z(t) dt

{cMt) X'(s)dX(s) N j

. A
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0 dw(t)
+ Z(t) -dwt) 0 (67)

z(0) 1

where w and v are independent standard Brownian motions on R1, then

the optimal estimate X(tIt) in the sense of (52) satisfies the following

stochastic differential equations:

dX(tlt) - -!- 2 (t)c (t)q-l(t)X(tlt)dt+

A •(~2-l [exp 1s~a(,_K(,it-1 (,),
X (tjt)R((a~t) - K(t)c (t)q- (t))[ d

•K(s)c(s)q- (s)[Z'(s)dZ(s)]1l 2 dt + K(t)c(t)q- (t)[Z'(t)dZ(t)]lZ)

(68)

k(t) = 2a(t)K(t) - (t)q'l(t)K (t) + b(t) (69)

K(O)t 0

The conditional probability density is given by

C)

(XZ) expZKt) (x + Zk-T - .(tIt))?]

X0 ZKt

O 2'1 + 1 Y ex[k K- ]ktt)
'~ - "" ep[ ]cos k(x - (t It)'

k=l
(70)

where x is defined by ecpR x - X and - "T< IT

The expected error 6(4(X(t), X(tIt))) of the optimal estimaate X(t t)

can be obtained by straightforward computation with the aid of (70). Some
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examples are given in the following corollary.

Corollary:. LetO be defined by exp = X and - 0 < Ir. Then

(i) far 4(O)= 1 cos 0

S9(•l(X(t), X(t t))) = 1 - exp - K(t)) (71)

(ii) for 4(0) = (1- cos 0)2

SA 3 2Kxp (-Kt)) +1

g( •(X(t),X(tIt))) 2 exp K(9 + exp (-.ZK(t)) (72)

(iii) for 1(O) p(O), the Riemannian metric,

g'(4(Xlt), X(t t))) 1 ex -Zk 1) Kt (73

(iv) for J• ()-p(0)

2 l 12g !D(Xlt), Xltlt))) = z•3 4 , D exp h!- . 74

S~k= 1

We recall that Kit) = 9•(xMt - tit1?. From this Corollary, it can be

seen that for the cases (i) - (iv), en(41(X(t),X(tlt))) is a monotone increasing

2
function of lxlt) -tit. It has been shown in Section 2 that this property

holds for all j defined by (7).

We note that the optimal filtering equations (68) and (69) are complex

in form. The concept of the filtering procedure, however, is quite simple,

and is best illustrated by the block diagram of Fig. 4.

The observation process dZ first goes through a nonlinear transformer.
The transformed process [Z'dZ]l 2 then goes through a Kalnman-Bucy

linear filter. Then we inject the filtered process xltjt) into S via the

- .; I " r I '• . . "I - "• •I [ I- •.... r'F •',,'_.4 .,.• . ... .. •,•.......:.•.A ...1'
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injection mapping J. The output X(tIt) of the nonlinear injector is the

desired estimate.

The same approach can be used to solve the smoothing and

prediction problems. rhe solution to the predictioyL problem is trivial and

hence omitted here. For the smoothing problem, Wre first recall (ref. ZZ)

that for 0O< < t

A+( (exp {a(T) K(7)c (T)q' (T))dT)c(s)q- (s)(dz(s)^X I + Xj K~k) C: at

_ c(s)•sIs dS) (75)

By (57), it follows that

. (X ex a()- K(7)C(q) (Td'
X(x it) =(X1Kx)+ K() ,ep (a()-')d

* c(s)q- (s)([Z'(s)dZ.s)1i 2  _ c(s)- (sIs)ds) (76)

We note that the conditional probability distribution of x(;,) given

Zt is Gaussian. From Theorem 4, it follows that p (XlI Zt) is a

folded-Gaussian density and hence unimodal. As in the filtering case,

ZlkIt) = exp (XlkIt)R) (77)

Substituting (76) into (77) thus yields

X(x It) = X(0 IX) exp IRK(k) if(e'p .(a(T) - K(T)c (T)q-l ()d')

* c(s)q ) ([Zsldzs)]z- cs) [X'(T•I T)dX )]l 2 d

(78)
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s4
A ~

where we have used the identity x(s s) = [X'(T I)dX(T17)] Z

0
Summarizing what has been shown, we obtain the following theorem.

Theorem 6: If the signal process and the observation process are theA
same as in Theorem 5, then the optimal estimate, X( it), 0 < X < t, in

"the sense of (52), is given by

XlXIt) =(Xl IX) exp RK(k) (exp (aCT) (KITlc lT)q (r))dT)

c(s)ql(s) [Z'(s)dZ(s)]1 2 - (s) d
S~(79) '

A

where X(T 17), K(-r) can be obtained from (68) and (69).

The conditional probability density of X(X) given Z ", the expected

errors i(k(X(k). X(X It)), the stochastic equations for X(X It) for fixed-

point smoothing, fixed-lag smoothing, and fixed interval smoothing can all

be easily obtained by straightforward computations. They are left to the

interested readers.

3.4 Random Initial State

In the previous subsections, the initial state of the signal piocess X

is assumed to be X(0) I, the identity matrix. This is obviously not a

practical assumption in some applications. In this subsection we will

consider the case in which the initial state is a random variable. We will

denote the signal process by Y in this subsection, and assume that

Y(0) Y is a random variable independent of the observational noise w.

We observe that the input to the observation process (32) at time t

is not the dynamical state of the signal. It is the angle that the rotational
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process represented by the signal has swept over the time interval [0, t].

Taking this viewpoint, our present problem can be solved with some

modification to the previous results.

Let y(t) denote the angle that the signal Y has swept over [0, t]. It is

•* easily seen that

t

y(t) I [ Y'(s)dY(s)]l, (80)

Define a rotational process X by

X(t) = Yo Y(t) (81)

Then X(0) = I and, as before, we may define

xlt) = (-1Xl)(t)- [ J Xt(s)dX(s)]lz (82)
0

We note that x(t) = y.t). In other words, the angles swept by X and by

Y over [0, t) are the same. Hence (32) can also be used as the

observation process for our present problem. The conditional distribution

of X(k) given observation Z of the form given in (32) can be determined

* by the application of the previous results.

We note that Y and X(X) are conditionally independent given Zt.

If the distribution of Y and the conditional distribution of X(k) given
0

Z are both folded nt,.rmal, then the following lemma easily leads to the

AI t
conclusion that the optimal estimate Y(k It) of Y(k) given Z is equal to

I A A
Y0 X(k It), where Y^ is the mode of the distribution of Y and X(k It) is

the mode of the conditional distribution of X(K) given Zt.

* Lemma 4! Let A and B be two independer. 2 x 2 orthogonal random

t-
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matrices which have folded normal distributions with modes A and B

respectively. Then AB is a 2 x 2 orthogonal random matrix which has a

folded normal distribution with mode equal to AB.

Proof. It is easily seen that there exist unique real-valued normal random

variaules a and b such that 9a, Ab E [-r, 7T), A - exp Ra, and B -- exp Rb.

Then AB = exp R(a+b). Obviously a+b is a normal random variable. Hence

AB is folded normal and the mode of AB is exp[R°'(a+b)] exp [Re(a)].

AAU
exp[R9(b)] = A B.

3.5 Multichannel Estimation

The results of the previous subsections can be extended to a large

class of problems -- those involving processes evolving on abelian Lie

groups. It is well known (ref. 23) that a given abelian Lie group G is

isomorphic to the direct product of a number of copies of the circle and a

number of copies of the real line, i. e.

S~~G Rnx(sl)

Im
where (SI) is usually called a "torus". The diffusion processes on this

type of space have been used to model some interesting satellite and

pendulum systems in ref. 46. Analogous to (28), a bijective mapping

S.Gsin+n (Gs)n (Ci)m s defined by
nm:2l l

:•(n (a)) (t) a [a (t),:... an(t), (J (an ))(t),...,(J(an )(t)] (83)

•-- , s .n+mfor a E (Cnm a. being the ith component of a. Thus a continuous random
(C) 1

signal process on G which is described by an WI-measurable function

X:Q - (C )n x (C s ) corresponds to a unique continuous random signal

process on Rn~m which is described by an W/-measurable function
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s m+nx:S---- (G1 such that

X(t) = (Jnm(X))(t) t E [0, S] (8d%

The mathematical model for the sensor can be obtained by first using

J n to inject the following vector random differential'equation into

Rn x (SIm

dz (t) = m(x(t), t)dt + dv(t) (85)

z (0) =0

and then differentiating Z(t) = (Jnm(z))(t) by the stochastic differentiation

rule to obtain a set of stochastic differential equations of which the first n

equations are the same as the first n equations of (85) and the last m

equations are bilinear 2 x 2 matrix differential equations in the form of

(32). This calculation is straightforward and thus we will not display those

sensor equations. Because of the bijective property of J it is c]ear

that the estimation analysis in the previous subsections can be easily

generalized tc this general abelian case with little modification. For the

special case in which x is a linear diffusion and m(x(t), t) is a linear

function of x(t), what has been shown simply asserts that the domain of the

celebrated Kalman-Bucy filter includes estimation on abelian Lie groups.

3. 6 Examples

To illustrate the ideas of the preceding discussions, we present the

following examples.

Example 1: Consider a cylindrical shaft of tmit radius being spun about its

longitudinal axis by an electric motor. We assume that the total rotation

of the shaft, x 1 , is related to the driving force u by the differential
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A
equation

+ Xl +x = u

with both xl(0) and (110) equal to zero. The last term on the

left-hand side of this equation can be thought of as a torsional spring

effect, which helps to stabilize the servo loop that drives the shaft.

The driving force u consists of a known driving force and a disturbance.

The known driving force adds neither difficulty to the analysis nor

complexity to the solution. Thus, for simplicity, we assume that the

known driving force is zero and that the disturbance is white Gaussian

noise -- i. e. u = ÷, where v is a standard one-dimensional Brownian

motion. Setting x2 = we obtain the vector stochastic differential

equation

dx(t) Ax(t)dt + Bdv(t) x(O) 0 ,

where

Sx x A B =

Suppose we wish to estimate the orientation of the shaft. The
t

orientation is determined by the quantitias sin xl(t) sin fx 2 (T)dT and
t 0

cos xllt) = cos f x,(l)dT. Suppose also that we have some means of
0

measuring these quantities, but that noise corrupts the measurements, so
t.

that our actual measurements are zl(t) A cos( Xz(T)dT +w(t)) and
S t 1•

zM(t) sin(oX(7)dy+w(t)) where w is a standard Brownian motion

0 P2
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process independent of v. Using the Ito differential rule, we

obtain the sensor equations

CI

dzl(t) zllt)dt - x,(t)z?(t)dt -z,(t)dw~t)- Zl(0) -- 1

dzZ(t) - z,(t)dt + x?(t)zl(t)dt + zllt)c•vt); z,(0) 0

Using the results of this section, we have the following cptimal

filtering equations

da(tjt) A.ý(tjt)dt + K(t)c'lylpt)dy?(t) - y2 (t)dyl(t) - c_(tIt)dt]

x(0 1O) -0

where

c = [0,1]

and K is the 2xZ solution of

K(t) = AK(t) + K(t)A' - K(t)c' cK(t) + B B';K(0) 0

Finally, the optimal estimate of the orientation -- i.e. the optimal estimate

of

Xl(t) exp(xl(t)R) sin Xllt)

-sin xM(t) cos xM(t)

is

xl(t It) =ex'p (x^(t It)R)

The steady state filter has the same form as the time-varying filter,

but K(t) is replaced by the positive definite solution, K, of the algebraic

Riccati equation

'M1
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AK + K A' -K c'cK + BB' 000 00 0O 00

The solution to this is

0
K

OD 0 r--1

If we formally divide dz 1 and dz 2 by dt and take 1 and 2

to be our measurements, we get the following block diagram (Figure 5)

for the signal process, observation process, nonlinear preprocessor,

optimal filter, and nonlinear postprocessor.

Example 2: In this example, the nonlinear signal process and the nonlinear

observation process of a certain system turn out to be processes taking

1 z 1 1
values on the abelian Lie groups S x R and S x R, respectively. The

signal process is four-dimensional, satisfying

1
dx1 : 2 I.dt_ x x3 dt- xzdv

dx2 2- _ 2xdt + xIx 3dt+ xldv

t
:•3 - fx 3 (s)ds + v

0 '

k x +
'4 3 + 4

x 1(0) I, xZ(O) x 3 (0) x4 (0) 0

The sensor equations are

dzI - Zdt - (2x + x - . sldx (S) + x lsldx (s)) z dt- z dw
4 ' 1 4 0j Z 2 21 zI A



C3, >

I0 w
(D )~ co

7F 0) C.- (1)
C:, U)

I f) 0 0

of. a- c7)j

a Zn-

0

a)ai0 + z
NN

Ix
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dz - ( x z d " - X S)dx (s) + x2 (s)dxl(s))

4 3 0 10

z dt + zldw1

t t

dz 3  ( 1 x(s)dx2 (s) 2x ]x(s)dx,(s)l cit f- dw 2  '

0 0

Z1(0) 1, z2 (0) - z3 (0) 0

where wI and w are standard Brownian motions independent of each

other and of v. Our problem is to find the least-squares estimate 5: under

2 AZ
the constraint X1' + X2  1, Rearrangements of the first two signal

equations yield

dt + R(x dt + dv)Sdx 2 dx I x 2x1_

Comparing this equation with (54). we see that its solution describes a

rotational process with a single degree of freedom. Let y(t) denote the

total rotation completed at t.Thert xl(t) z- cos y(t), ,x.t) = sin y(t),
dy = x 3dt + dv - x1dx 2- x2dx1 and the first two sensor equations become,

after some rearrangements,

dz I d-.-. 2  z1 2
"[dz R- 2- 4+ - Y, it + Rdw!)

z1dz dZ 12 1 -

We note that the system i.a not observable with just the S1

Sobservation pai r zz 2, or with juat the R1 observatiot, z3 , but that

the system is observable when both observation prcce.sses are present.
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Following the approach developed in this section, we first obtain the

following optimal filtering equations:

[EE A1 " + KC' fj dz :dz zl G dt 1

3 3d3t

[~O) ~(0), x(0)I 0

where

S= AK+KA'- KC' CK+BB'

K(0) 0

0 ] 1[] 0: :1

1 0

With help of previous results, we see that

S•(1 - cos (y-A)) < g(1 l o (y- )

for all ztmeasurable •. Hence

SI •[csy- cos 9)z + (sin y - sin 9)Z]

!1 -6~cos •](y-~) _l-g[cos(y-•)]A 2 A Z
91 (cos y COSy- cos) +y(sin y-sin) ]

AA

for all z -measurable ý. This shows that the least-squares estimates

A A2 A2and XA under the constraint x 1 + - 1 are given by

S~A
"x cosy

x 2  sin y

The block diagram of the optimal filter is given in Figure 6.
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4. Discrete Time Estimation

We now wish to examine the problem of estimating a random

process on S, given a serieq of discrete measurements. A natural

model for the measurement process is a discrete approximation to

the continuous measurement process discussed in the pi-cceding section.

We approximate the continuous rne,.surement process

dz(t) = m(x(t) ,t) dt + ( d (t)

Z(t) = (J(z) (t)

by the discrete equations

k k k-l mk(Xk)At jkAwC

Yk exp(yk R)

where At is the inter-measurement time, xk x(kAt), q q(kAt)

m m( , kAt) , and Awk =w(kAt)-w((k-l)At).
kk

We can rewrite the Yk equation as

Y Y exp(A R R (86)

and we see that, giv'en the measurements Y, . Y k- . the new

information contained in Y is equivalent to the new information in
-1

Y Y This information is easily seen to be equivalent to the
k-I kc

knowledge of

"" A mod 2-1 (87)
k Ayk

where we adopt the convention vk C f-rrr) .
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It is here that we see a marked difference between the discrete

and continuous problems. In the continuous time problem, the

continuity of the stochastic processes results in our knowing dy(t),

not just dy(t) mod 2 1 . However, in the discrete problem, the

ambiguity associated with our lack of knowledge of the number of

rotations that occur in the At between measurements, is reflected

in the fact that our information is just Ayk mod Zr.

With this discretization as motivation, in subsection 4. 1 we
S1

will formulate a class of single stage estimation problems on S

and will derive conditional density equations that lend themselves to

a relatively simple physical interpretation when considered alongside

the preceding comments. In addition, extensions to the multistage

problem are discussed.

The results of this subsection provide a striking example of a

class of systems for which the continuous time problem is decidedly

less complex than the rAscrete time problem. Thus practical

suboptimal schemes are necessary in the discrete time case. To

this end, an appendix has been included, in which the relationship

between the discrete and continuous problems is discussed. Motivated

by this discussion, several suboptimal schemes for the discrete

problem are discussed at the end of subsection 4. 1 .

In subsection 4. 2, we will use Fourier series analysis to studv

a more general discrete time estimation prublern on the circle. The

form of the conditional density equations will suggest a simple method

for designing suboptimal filters for any estimation problem on S.
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S1
4. 1 Conditional Distributions on S and Optimal Estimation

Suppose we are given a random variable x, taking values in R

with a priori density p x(•) . We can "project" this variable onto the

circleL by the equation

S= x mod Zrr

Thea priori density (with respect to the. standard (Haar) measure on

I
S ) for 0 is given by the associated projection map

p(") = p.(a + Z7-r) ; a. £ [-TT,rr)
n=--0

We suppose that a measurement of the form

y= (rm(x) + v) mod 21 y e [-Tr,TT)

is taken, where v is a random variable on R I independent of x

(and thus 0), with density p (v) , and m:R1 -R 1is a Borel measur-v

able function. We also define the auxiliary, unobtainable "measure-

ment"

y m(x)+ v

which has a density function given by

= J Pv(-M(u) p(u) du

Then we have the density for y:

=y pl0 +y ( 2nTt) c :T.T
n--1

-V --. L- - ~ -- -- -~- ~ ~ -- - --
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We wish to compute the conditional density p0 1 -, (of ) , or,

equivalently, the density pxp.. (al 0) . Also, we wish to know if this

density has a rirticularly nice form if m is linear and x and v are

normally distrib'ited.

We will derive somewhat more general results, and will apply

them to this problem. The arguments in this section are measure-

theoretic in nature, and are summarized in the statements of

Theorem 7, Theorem 8, and their corollaries. The solution to

the specific problem stated above is given in the statements of the

two corollaries to Theorem 8.

We consider the probability space (R ,nsI, P ) where i is
y

the a-algebra of Borel measurable subsets of R , and P is any
y

probability measure on.,/, We define two random variables on

this space.

y(W) :(

"••w) : comod2.r y C [-n.r) )

Then .'i , the T-field generated by y , is .-1, and .WV. (defined analo-
y y

gously) consists of the following sets

A A A,[-7,,T) A E:.V and
V

A : U (A + ZnT)

i. e. A is "periodic" in for,. and thus is determined by A
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We define a sequence of measures on the measurable space

([-rr,rr) ,J'), where Y' is the y-field of Borel subsets of [-jr)

P n(S)= P (S+2nTr)
y y

P (S) n
cy _( _ P y ( S ) S m n a s t

n nclearly P (S) = 0 -: pn(S) =0 which means P is absolutely

continuous with respect to Py (P<< p andthus, by the Radon-

Nikodym Theorem, [24], [25], for each n there exists an 5'-measurable

function dP /dP , such that
Y y

ndpn .d.. ~ e9

n (s) = "--(W) dP ((J) I S C

y Y
S dP

We wish to compute the conditional probability measure P

for y given y . The following theorem shows that this conditional

measu-e can be expressed in a form that reflects our uncertainty as

to the number of integral multiples of Zn that separate the values

of y and y.

Theorem 7: The conditional probability measure

i ;. 4. - -_
P, (C )= P (y Cc -1 1 ; PaI), Ce C

can be expressed in the form

- +C - dP n -

P c• ' ) ( + 2nt)L ()) (88)
we y h n=-c dP

whr Y stecaatritcfnto o
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Proof: From the definition of conditional expectation, [26], [27], [281,

we have that PyW-(Cj 0) is the unique (up to with-probability-one

equivalence) ,d-. -measurable function, such that for any A C ý-,
y Yy

JYC(Cd) dP(to) J y P (~C 1-y(W)) dPy(W) (8)y f Y

A A

The left-hand side of (89) equals

A--ZS Y w) dP (C) - C +2nnn bo A +2 nTT n:-= A

where A = A .1 [-rr,) . This last equality follows from the definition
n

of P and the obvious relationships among ,i- and Y-measurabiity.
y

Now Pn << p , so
y y

A.'+C + )(+Z nT) dPg 
A

+C0 dP n)(9
E 1nC (+ +2 n) -;=Y ) dP 1nA-c dP I

A y

A n:yd

where we have used the Radon-Nikodyrn Theorem, the fact that

dpn/dP > 0 a. e. (Py) and the monotone convergenceY Y --

theorem, [24].

3:
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Similarly, the right-hand side of (89) 'is equal to

A+Zn I

= -y•_(,••)P •

I where we have used the periodicity of 'y(Z) .Again using the Radon-

Nikodym and monotone convergence theorems, this last expression is

equal to

dPn(cP (CRY __ ~Y dP()
n=-co dPY

A ySdP n

SClearly P is a probability measure on [-Tr,TT) since
y

n

P dP ([--P( (A y

S'P ([-TT.rr) + ZnnT) P( o)
n=-W y y

44
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n4

+00 dP"
(S) S(s) = @ (. ) dPy(z

+w ~ dP
yy n=- n=- dP y

S n=-oo dPy

and, since P is a finite measure, this implies thzat

n'• I+CO dPn

E - 1g) = I a.e. (P )
n=-w dP V

Thus, the right-hand side of (89) is

P lC[P (g) ) dP (y) (91)

A

Comparing (90) and (91) we see that the conditional measure is given by

dn+= dPn

(Cl~•) ) = .,c (a+Zn") .) (7)
yln=-co dP

y

But this is defined for E [-rTr,) , and in this case •(g) = •. Thus

- +O dP n

n=- dP
y

We note that for ' xed , P -(Ct 0) is a sum of Dirac

measures concentlatedatthe points B + Znrr , where

y dPn

dP
y
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Thus, in terms of 6-functions, we can write the conditional "density"

.n

+CO dP

py- E -,,Y (0 Znnr (92)
n=--o dP

y

Corollary: Suppose P is absolutely continuous with respect to
y

Lebesque measure X

Py(A) = pyl) dX(g)

A

Then the conditional "density" is given by

4

-• p+o, p(-, nn)

= ( y 6( -Zn-r)1) (93)

Proof: It is easy to see that P n is absolutely continuous with respecty

to Lebesque measure ( also called X on [-Trr.r) ,and

p = p-( +2n)

Pois a version of the Radon-Nikodym derivative. Clearly poi u 0 r

yy

"a. e. (X) and thus, by monotone ccnvergence and the finiteness of P .

y¢
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+C0

_ +1k•" p (rq+ ZkI)

is finite a. e. (k) and, in fact, is the Radon-Nikodyrm derivative

dP /d) . It is then clear that
y

dn dPn/d ¶~ ( ndP dP /dX (T) p(Tj + Znkr)

i dP dP _d_ (_ 
_ +ky y p( 2T

Finally, conbider the set where PYI- (E is undefined i.e. where

Finally, p+ 2kT) =0 ¶)

But this set is a set of P -measure zero. Equation (94) followsy

immediately from (93) and the properties of the 8-function. U

We make the comment that P is the probability measure forY

the random variable Y , and thus, a naive application of Bayes'

rule yields

P7€•p =

(0 - ( odZT)) p

". +- 1• +L y (+k
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We now consider a more general version of the problem stated

at the beginning of this subsection. We assume that we have a probability

*2 2 2 2
space (R a, P ) , where.A is the Borel field of R. We

define three random variables

y(c0 1 ,w 2 )

"•€•'2) = 2rod-

Aw(w1 ,w) (j? mod 2rr

and the marginal distributions

Px(A) = Pxy(Ax R) A 1

P (B) = P (Rlx B) Bec4 1
y xy

(.All Borel measurable subsets of R )

We let W y = the minimum sub a-algebra of 4d 2 with respect to which

y is measurable, and we define d and d-- analogously.
P Y

We wish to compute the conditional measure Px '" As before,

we obtain a form for this measure that reflects our uncertainty as to

the number of multiples of Zn that are "chopped off" of y in the process

of observing y . To derive the desired result, we will need to consider

two o ,,er conditional measures, P - and P Since W- C d
xY. xjy Y y

- * (i.' " a deterministic function of y), we have

S(ATh) P (A[ (95)II

- Y"
~'¶ M ht 5C.~ Xt
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As before. we define the following measures on ([--,TTi) ,9')

Pn (S) P S:S + ZnTO)yY

P_(s) -- -. s) S (CS

Theorem 8: The conditional distribution P( (C is given by

n
-,(C. +W dP -,, nr

n=-wo 4P
Y

Proof: It is easy to see from the previous results that the conditional

probability a

P~a-(y=~j) ~x..yj I-R y x~

exists and is given by

( 27 = + Zkrr

PYa-y yI~

0 otherwise

Using the properties of iterated expectations, [28]. and

equation (95) J

= (C t Pxi y(C I •)I

"f P = q9) = 0I

R -

WA-~ --
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Since P ICI l, ) is indcpendent of WI we perform the .

integration with respect to Ed1 first',

Sxi• (CIO , xI y (cI y(C*Z) d~yl- (UZI !4

R1

= m • Y ( cy -+ Zn=)

n=- dP

P (y +2nTTI )P (CI y =+ Znn). -
n+-•) xly

The following two corollaries solve the problem posed at the

start of this subsection.

Corollary 1: Suppose x and v are independent real valued random

variables, and define

y = m(x) + V

y = y mod ZTT

I I
where m: R --*- R is measurable. Also, suppose px(aL) and pv(v)

are the probability densities for x and v respectively. Then a version 9

of the probability density px1 (alI0) is given by
y

+Go +a p(0+Znr,) -(LI
P I-I' L) = Px Oa{ X + ZnTT) (97)

y E I

n= -a pj(+nI)-()(8
y

+CO P l ( + Zn7TI Ct) P (la)

pyl x

(98)
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where

Pyjx 1 i + 2nnx = 0 + Znh - m(a) ) (99)

py ([ + 2nr) = P ([+ Znnrl u) Px(u) du (100)

P-(•) P( +2nTr) (101)

Proof: Equation (97) follows from Theorem 8, the corollary to

Theorem 7, and the observation that, if the measure Px(CI B) has

a density with respect to Lebesque measure, then, from (96), so does

SPxj(C ),and it is given by (97) . Equations (99), (100), and (101)

"are immediate consequences of the definitions and the independence

of x and v . Equation (98) tollows from (97) and Bayes' rule.

Corollary 2: If x and v are normally distributed and m is linear

(m(x) = ax) . ther px.1 (al a) is expressible as the linear combination (102)

of an infinite number of normal distributions, with weighting coefficients

that are functions of the measurement and are given by

- , p (5 + ZnT) N(l + Zni- ar,, a y +,y?)

Na all a -y

yv
41

where

Sp(.a) eN(a ii,'y 1)

xA
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1 -V / 2y 1  _

Pvp(') - e -N(v: 0, Y2

Proof- We will use the form of Pxj- (aJO) given in (97). The additive

properties of independent normally distributed random variables, [291,

yields

pN( * a. , a _Y + 2 )

and therefore the equation for c is correct. Thenn

+myp (al + ZnTr) (102)

But Px[ Y is the solution of a linear filtering problem, and therefore

is a normal distribution. In fact

p., y (a+2nT) = N(c.; Tnn'Y3 '

where

-Y 3 a 2 
! 

+ Y

a -y1 + -2

That is, the nh term in the series in (102) is evaluated by an

optimal linear estimator which takes as its measurement • + Zni7.

We also note that if the initial distribution px(oL) is an infinite sum of

4K

:1
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normal densities with means in then the density PXI- (ol is a

doubly infinite sum of normal densities, with means computed by
th

optimal linear estimators, the (j, k) of which takes as its initial

mean n.. and as its measurement • + ZkTT . Again. the coefficients

are nonlinear functions of the measurement.

Once having the solution pxl-(oxl 0) . we can compute

pe 1-(aI•) . If the hypotheses of Corollary 2 are satisfied,

p(' (ý) is an infinite sum of folded normal densities.

An interpretation of the form of the conditional density is readily

available. The infinite summation is a result of the "mod 2T"
tin

ambiguity in the measurement. The n term in the sum is the linear

result if the measurement were y = • + Znrr , while, as derived in

Theorem 8 and its corollary, the coefficient c nl) is just
n

P (y = + -n.• .) i.e. it is related to the difference between

y and v expressed in multiples of ZT.

Thus, the terms corresponding to the more likely values of y --

the more likely number of multiples of Zn -- are more heavily weighted.

Thus, one could consider approximating Pxl-(o) (and thus

poe-( B) ) by a finite sum of normai distributions, where we must

devise a procedure for deciding which terms to Keep. Some wor-

involving this type of approximation has been done by Buxbaum and

Haddad, [30]. Such a procedure is certainly necessary if x is a

random process instead of a random variable and we take a sequence

of measurements, since, by a simple inductive argument, after M

measurements our conditional density consists of M infinite sums of

normal densities. Note that all the normal densities have the same

variance.

1'r v.# "' . - I *..:4~* ,.A
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A

In the particular case in which in is linear, we see that the

conditional density is of the formVO.
p(e) = = Cn F(O: nt 1) (103)

which is precisely the form studied in Section 2 (see equation (21))

Thus, the estimation and error analysis results of that section apply

here. These results will also apply if we approximate (103) by a

finite sum, and, since the truncation procedures of Buxbaum and

Haddad and the estimation equations of Section 2 both lead to simple

algorithms, this approach leads to easily implemented filter equations.

We remark that the appendix to this report contains results

relating the discrete and continuous problems, by showing that as the

time between measurements, At , becomes small, the terms in the

conditional density corresponding to a nonzero number, n , of rotations
2

between measurements go to zero exponentially in I/At and in n

Thus we see that if the inter-measurement i ne is small, a rather

crude truncation procedure -- one that keeps only a few terms,

corresponding to one or two rotations -- will provide adequate

accuracy.

In addition to the method of truncating the infinite series in some

systematic manner, another suboptimal estimation scheme is suggested

by t1'e results of the a endix. Since for small At the difference between

the continuous and discrete time solutions is small, why can't we use

the continuous time results in designing a suboptimal discrete-time

filter! That is, we can desigr the continuous time filter and use as
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an input the discrete time measurements, which we hold constant

over the interval between measurements.

We have not attempted to describe in detail the design of these

various suboptimal estimati'i, schemes, nor to analyze their per-

formance, but rather we have only meant to indicate possible alterna-

tives. Clearly further analysis and some simulation results ar-

necessary before we can decide on the validity of these different

approximations. The conceptual ideas behind these two basic methods

are depicted in Figures 7 and 8.

Analogous to the discussion at the end of Section 3, we can

extend the results of the present section to problems on arbitrary

n +mnabelian Lie groups. Let x be a random variable on R with

probability density p ((x ) I and consider the associated
x 1 "n Sm

random variable, x on R x (S ) defined by the map from

R n +m into Rnx (S1)m given by

(xi....Xnx+ 1 .... ,xn ) -'- (x. ..... x x mod 2rr,.
no n I n'r on+l

x mod 27T
n+m 3

Then the density p - .. tn 1..... ) is given by
P~x al .... tn"l .. ... a• ) =

E °'°_nE... .. .=

Px( tna 4Z2krr ..... +2k ri
nI-.-Co - -kM.
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Yk SampleOpia-ay and v-_ Continuous-Time X '

SHold . Filter,_

Figure 8: Illustrating the Concept of Using the Continuous-Time Filter

to Approximate the Discrete-Time Filter

If p is a multidimensional normal density, then p.ý is called an

(n, m) normal density -- n referring to the number of marginal densities

which are normal and m to the number of folded norma! marginal

densities.

It is easy to see that minor changes in the arguments of this

section lead to the following conclusion: let C : R n -- R be a

linear map and w a I.-dimensional normal random variable independent

of x , an (n+m)-dimensional normal random variable. Consider the

random variable y defined by

v = Cx + w

and define the associated random variable y by

V. V. 1< i< k

Yi rood2: k < i <_k
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N i
Then the conditional density f can be written as a (k-kl)-times

countably infinite sum of normal distributions, the (r ,..... r )

of these being the linear result if

Yk, +i = yk1 +i + Zr. i = . k-k.i 104)

and the coefficient of this term is just the conditional probability for

equation (104) to hold, given the random variable y .

4.2• The Discrete Measurement Problem Using Fourier Series

As was seen in subsection 2. 2, Fourier series can be a useful

tool. In this subsection we will use it to aid in analyzing a rather
:• S1

general discrete-time estimation problem on S. Again, we will

conside" the single measurement case. Extension to the multistage

process with measurement noise independent from stage to stage

is immediate.

We consider the problem of taking a measurement of a random

variable, 8, on the circle with a priori density

S=-TT + a sinnF. + b cosný

We assume that we take a single (possibly nonlinear) measurement,

y , of 0 , and that the conditional density Pyl O(Y I ) exists. Consider-

ing this as a function of E fi - fixed B • we must have

Py1 0 + -n) Py 0  •

k , .,, --
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Thus, we can write p 1 0(t1 F) in Fourier series form in g for fixed

P= d 0(•) + c(8) sin ne + d() cos n5

where the c 's and d Is are functions of • An application of
n n

Bayes' rule yields the Fourier series form for the conditional density

Pol. yg •

0, y' a( s
PO (Fl o) = •n) sin ng + bn(O) cos ne (105)

where

an() o)a() = Zflc(•) . bn(•) =-rc8 I6
a n b (() (106)

with

I~) do(8) 1 ' 17

c1 =•-Py(M) = . + -2 [a Cn() + bnn) (107)

ck(o) 1
k( a k d0(0) + •- +2 [andk-n(o) +bnckn(o)]

klOO
+~ 7 [a ~d( + b c k(P)1 [a d + +

(108)
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b (~ bd() + .... + [b d() ac

+g • [anCn(0) +b d (0)] + [ac(s) + bndn(•)] (109)
n1 k n n+k n n+k n+K n

Note that the equations for c, ak. and I are bilinear in the
K

Fourier coefficients of p,(.) and pY18 (0 1, and one should note the

marked similarity in the structure of (108) and (109). Thus, the

computation of p,[yg • involves the (in general nonlinear) computa- )

tion of the coefficients cn(0)) and (dn(0)) and the evaluation of

the bilinear equations (107), (108), and (109)

The form of these conditional density equations suggests a

truncation of the Fourier series for p9 and p e which leads to

finite sums in (107) through (109), however if we retain the first N

modes of p, and the first M modes of pwil then p have
tPt

terms up to the (N+M) mode. Thus, to keep the necessary memory

in a multistage process from growing in this manner, it becomes

necessary to devise techniques for sequentially truncating the

conditional density for I . We will not treat this problem in detail,

but will make some general comments. In general, just keeping the

first N modes of p, yis not an acceptable method, since we require

that the truncated density be nonnegative everywhere. However, if, for

instance PNv is continucus, the coefficients fail off as and thus,
N Ifor any given E> 0 . we can choose N sufficiently large so that, if

we keep the first N modes, the truncated density will be bounded below

. - - i"
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by -e . Alternatively, if p represents the truncated version of

" Pei obtained by keeping only the first N modes, and we then defineSPoly

p max (0

we can take the Fourier coefficients of } as the coefficients of our

approximation to pY

If we were to use the straightforward method of truncating the

Fourier series for p01 , equations (107) through (109) can be writtet.

giA) (A5)h (110)

where h is the vector whose elements are the Fourier coefficients of

g(ý) contains c(s) and the ax ()'s and r ($)'s and A(P) is a
Su k

(2N+l) x 2N matrix (assuming we keep N modes of p, and pI )

whose elements are the Fourier coefficients of Pyj " The structure

of (107), (108). and (109) is reflected in A and may lead to efficient

methods for evaluating (110)

Finally, we note that this approach is extremely general, in that

the only restriction onthe form of the measurement is that the conditional

density p exist. For example, in addition to measurements such as

y e+v) mod Z-r

which are considered in subsection 4. 1 , using the Fourier series

approach we can also consider measurements such as

1
.v = sine +v

1 It has recently been pointed out to the authors that Fourier analysis

results for this particular measurement form were presented in ref. 47.
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5. Applications Including FM-AM Demodulation

The previous sections hzve describe!d and analyzed a class of

mathematical m,-,uls for which relatively simple optimal filter have been

obtained. The problems considered include many inherently nonlinear

ones. These results are intt -•sting in that they provide a new way of

introducing randomness into the system equations in such a manner as to

lead to simple synthesis procedures for optimal estimation.

Among the potential areas of application are FM demodulation, AM

demodulation, combined AMI-FM demodulation, optical communication,

frequency stability, and gyroscopic analysis.

The usual mathematical models for the received FM signal are

(refs. 31, 32, 33)

r(t) A cos (wc0 t + I x(s)ds) + N1 (t) (11l)

or
t

r(t) A cos (W0t + f x(s)ds + N.(t)) lilz)
0

where N and N2 are noise processes (here assumed to be Brownian

motion processes), and x is the signal.

It is the mathematical model (112) that we wili consider in this

section. More detailed descriptions of and other analyses using this

model can be found in references 31-39 and 45.

We remark that there are techn;qu-s for ietermining

tlsill (tot + tx(s.)ds + N (t)) froty, r(t). Using the n:..,ation of the preceding

sections, we take as our observation the ' x Z orthogonal --iatz-ix

I
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r* cos (b 0 t + / x(s)ds + N2 (t)) sinluot + x(s)ds + N2 (t))
0 0

Z (t) t.

[-sin Iw0t + J x(s)ds + N2 (t)) cos(wot + [x(s)ds + N 2 (t))J

Then we can apply the estimation results of previous sections to obtain an

tI optimal estimate for the signal x(t) (see Lemma 3).

If the signal x(t) is a linear diffusion process, the optimal

demodulation equations take a particularly simple form. Also, if we have

a multi-channel FM system, we can model it a la subsection 3. 5 and use

the results on filtering in abelian Lie groups to design an optimal

frequency demodulator.

The theory developed in this report also has possible applications in

AM modulation, joint AM-FM modulation (ref. 33, p. 6Z8), and optical

communication. The Lie group of interest in these cases is C - o1t --

the set of nonzero complex numbers with complex multiplication as the

group operation. Its (real) Lie algebra can be identified as R , and the

map exp:. R-) C -101 is defined by

x1 + ix
exp (x x e (113)

We note tha.t C- Jo0 z R x S via the identification

r+ iO
(r, 0) -- * e r e R, 0 [-IT7)

Thus S is the subgroup of C- 101 consisting of al complex numbers of

2length one, and its Lie algebra is the subalgebr, of R obtained by

requiring x 0. We note that this representation of S' could have been

used in the preceding sections, instead of the 2 x 2 orthogonal matrices.

- ..- ~---,s-.-.-. *-. -- ,-
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Also, we see from (113) that x1 controls the amplitude of exp(Xx 2 ),

while x2 controls the phase.

Now suppose that we have a continuous signal process on R2

[ x 2 (t)

We define our measurement process, z(t), as follows:

dy(t) z x(t)dt + dv(t) (114)

Yllt) + iYlt)

z(t)- exp(yl(t),y 2 (t)) - e (115)

where v' ivlv 2 ) is a Z-dimensional Brownian motion process,

independent of x.

This problem clear>"- fits into the framework discussed in Section 3,

and thus can be solved by the methods described previously -- i. e.

knowledge of z(s), s < t is equivalent to know:ledge of y(s), s < t. In

fact, we can express dy(t) in terms of z(t) and dz(t) with the aid of the

Ito differential rule:

dz(t) (dyl(t) + idy2 (t))z(t)

+ qt (t) + iq,(t) q jz(t)dt
where

E(dv(t)dv'(L)) Q(t)dt

ql(t) ql 2 t)

Sql21 q22(t)
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Thus

d - d .qll(t) qZZ(t)
dyl(t) -Re dE()i dtz zt) J z

Sdz(t)

dy 2 (t) Im z - q 1 2 (t)dt

Also note that, if we assume y(0) 0, we have

t

it) f 0 x(s)ds + v(t)
0

and thus

t. .
Fv (t) + 1ij (E xl(s) +ix,(s)]dsj

z tM Le 1 v2 tj Le0  +(116)

We then see that our signal is both amplitude and frequency modulated,

and the noise enters muitiplicatively and is a complex lognormal process

(ref. 40).

Thus, equation (116) yields a message model for a joint AM- FM

modulation system, for which there is a simple optimal estimator. The

AM case is obtained by setting x2 = v 2  0. We note that our AM

modulation is not the usual one -- actually x 1 (t) is more like an amplitude

rate modulating signal. However, if we let xl(t) .- (d/dt) xl(t), where

x (t) is the actuiz.- signal we want transmitted, we have that the amplitude

modulation is (assuming x1 (0) 0 and x is deterministic).

Kx(s) ds x

e e



Thus

SIdz--•] qll(t) -qZz(t) d

dyl(t) Re {dz(t) - dt

dy2 (t) Irn dAz-) - q 1 2 (t)dt

Also note that, if we assume y(O) 0, we have

yl(t) = x(s)ds + v(t)

0

and thus e

t.1

z(t) + v ( 2 J

iv(2)te e (116)

We then set that our signal is both amplitude and frequency modulated,

and the noise enters multiplicatively and is a complex lognormal process

(ref. 40).

Thus, equation (116) yields a message model for a joint AM-FM

modulation system, for which there is a simple optimal estimator. The

AM case is obtained by setting x 2 - v2 = 0. We note that our AM

modulation is not the usual one -- actually xl(t) is more like an amplitude

rate modulating signal. However, if we let xl(t) .- (d/dt) 'l(t), where

x (t) is the actual signal we want transmitted, we have that the ..nplitudeI

modulation is (assuming xl(0) 0 and x is deterministic).

t

Lxls ds x
C e

J1
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(d/dt)rI (t)

or, if X is deterministic and differontiable, and we let x (t)

then

'X (Sds

1 xl(t) x1(o)

(assuming x0 > 0). Also note that in the AM case (x, 0) we can include

v 2 (t) as a random phase, and in the FM case (x E 0) we can include

vM(t) as a random amplitude.

In optical communication theory, variations in the transmission

medium -- e. g. turbulence in the atmosphere -- cause variations in the

refractive index of the air. This disturbance can be modeled (ref. 40) as

a lognormal noise process which multiplies the signal. In this case, this
A

analysis (equations (113) through (116)) may prove to be helpful in the

design of good receivers. In particular, these results may be useful in the
i'case of spatially uniform noise, and, in addition, we can treat the problem 1

with real and imaginary parts of the noise process dependent on each other

(ql(t) 0 0, see ref. 40).

The problem of frequency stability (refs. 41, 42, 43) is another area

of application of the results of this report. This problem involves devices,

such as oscillators and extremely accurate clocks, in which we wish to

"measure deviations of the operating frequency from some ideal or nomdinal

frequency. In other words, we have a signal of the form

i(W0 t + x(s)ds)e

where t0 is the fixed, ideal frequency and x(s) is the random, time-

varying deviation nf the actual frequency from the ideal frequency. The
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problem is to devise a measurement and es.imation system to determine

the deviati'in x(t).

There are various types of measurement processes discussed in the

literature (refs. 41, 42, 43). One of the most widely mentioned involves

the multiplication of the signal by the output of a second oscillator and the

measurement of the beat frequency. That is, Jf the signal from the

second oscillator is

i(col t - vMt)

e

where w is a fixed frequency, close to w0 ' and v(t) is a random deviation

from wI, our measurement essentially is

t
i[(Q0 - WI) t + f x(s)ds + v(t)]

0e

If we assume that v is a Brownian motion process independent of x, and

if we subtract off the known term (w 0 - W 1)t, we are left with the

observation equations

dz(t) x(t)dt + dv(t)

Z(t) e iz(t)

which is precisely the form considered in this report. Further if we model

x as a Brownian motion process or a linear diffusion process, we can use

the optimal filtering equations of subsection 3. 3.

A final area of application is in the estimation of the angular position

of a body spinning about a given axis. If we consider the single-degree-of-

freedom integrating gyroscope, (ref. 44, pp. 104-105). we note that the

.,., ~ -~,-~-.- -' ,-- -
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output of this device is an angle -- essentially the shift in orientation of

the gyro from some reference position. The orientation of the gyro is

determined by the integral of the angular velocity acting on the gyro about

some fixed axis. Noise in the system is modeled as gyro drift -- an

error in the angular velocity detected by the device. Using this model for

the dynamics, the estimation results of this report can be used to design

a system to estimate the actual angular velocity.
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6. Conclusions

In this report, a class of estimation problems on the unit circle is

formulated and resolved. Both the continuous time and discrete time

estimation problems are considered. The signal and observation processes

on the circle are constructed by taking the projection modulo 27r of the

corresponding standard 1-dimensional processes. The stochastic

differential equations which govern their evolution are bilinear in form.

The observational noise can be viewed as entering multiplicatively.

Error criteria, probability distributions, and optimal estimates on

the circle are studied. In particular, various properti :s of the folded

normal density in connection with estimation are discussed in detail.

An effective synthesis procedure for continuous time estimation is

provided. The measurement data is first processed through a nonlinear

transformat.-n. The transformed process then goes through an ordinary

estimator, such as the Kalman-Bucy filter. After another nonlinear

processing of the output of the ordinary estimator, the desired estimate is

yielded. Filtering, smoothing and prediction can all be treated in this

manner, and its generalization to estimation on an arbitrary abelian Lie

group finds no difficulty.

In addition, the discrete time problem was studied, and an intrinsic

difference between the continuous and discrete problems was discussed.

This difference stems from the loss of information between the discrete

measurements. Unlike the vector space case, this loss of information

causes the expression for the conditional probability distribution to be

rather cumbersome. Although suboptimal estimators can be obtained from

the results of Section 4 by careful examination of the form of the equations,
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the increasing complexity of these equations with each additional

measurement has prevented the authorb from deriving recursive equations

for the optimal estimate.

Applications to AM and FM demodulation, optical communication,

frequency stability, and fixed axis rotation problems have been described.

These practical problems provide physical justificaV.on for the proposed

mathematical formulation. The application of the mathematical results

of this paper is seen to lead to neat solution and easy implementation in -3

these practical situations.
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APPENDIX

Some Limiting Arguments Relating the Discrete

and Continuous Problems

We have seen in Section 4 that the ambiguity concerning the

number of rotations leads to equations for the conditional density that

involve infinite sums. Intuitively, if we observe the process contin-

uously, this ambiguity should disappear -- assuming the random

processes involved are continuous. From the rigorous arguments

of Section 3, we have seen that this is the case -- i. e. in the limit

we know dy(t), not just dy(t) mod 2 Tr . We can also see this by

examining the discrete approximation to the continuous problem.

Our discrete equations are

"AY'k = (A Yk)mod Znr

= [m(x, kAt) At + q(kAt) Awk] mod Zrnk9k

where xk = x(kAt) , and x(t) is a continuous process, independent of

the Brownian motion process w(t) . We also assume q(t) is continuous,

m(x, t) is measurable in x for all t and continuous in t for all x.

We wish to examine the effect of one additional such measurement

at time t , in terms of the size of At. Thus, we assume we have

computed

Px(t)(a) Px(t)(0ipast measurements) (117)
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and that we take the measurement

AYt = (Ayt)mod 2Yr

= (m(x(t), t) At + qq(t) rW Mod 27T

As indicated in equation (117) we will suppress all conditioning on past

measurements. Thus, we wish to compute Px(t)I Ayt •1 in terms of

Spxt)(a) and the new information •yt" (Here -5s the observed value

of 2:',L )

Using the discrete measurement formulae, we have

= (IO1) n(5) P3 + Znn) (118)

where we have the explicit formula

whN(e + 2nha- m(Xt)At; 0, q()At) px(t)(C) dv

C n( O) = G
N(O + riT - mlu) t) At:- 0q(t) At) ,p)(t)(u) dAu

(119)

(.1 -"
exp Zq(t) At + 2+ nrr - m(u, t) At] Px(t)(u) du

= exp - 2q(t) At L +2rrr - mlu, t) At)2 L tJ P(t dv

Examining this expression, we see that the numerator contains

a term
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2n n2

e q(t) At

which is o(&t ) •t > 0 if n • 0. Thus, one sees that for small At

the probability that Ayt and Z'yt differ by a nonzero multiple of

2r appears to go to zero quite fast as At • 0 . To make a precise

statement concerning this, we must make some technical assumptions:

(1) The probabilhiy density for x(t) conditioned on the past

measurements, p(t)(CL) , exists.

(2) The conditional density for x(t) . if we were to measure

A yt (not y), Px(t)I Ayt Y ) exists and is bounded uniformly

for all o. and •.

(3) We have the following bound:

t + e m2 (u, t) ek-lc2 -2

et) + -r(u, t) u) du< ( 2 ) e( (120)i " Pxlt)(

2 aebuddfra2
where I(L, k(a7) are bounded for a f [o,] y, for some y> O.

We can now prove the following

Theorem 9 : If the assumptions above hold, we have the following

relationship among the c 's

-do(At 2,> 0
ntO co(0

p Pxxtf I( O > 0t12
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We will need the following technical lemma:

Lemma 5: Let y(t) be a continuous, real-valued function of time, and

define

yt (s) (y(s) - y(t) ) mod 2T (s >. t)

Let q be a positive constant, p(x) a measurable real valued function

on . h> 0, an element of L (R) such that lIhl L > 0 . and

ISn]n=1  a sequence of real numbers decreasing to t. Then there

exists an integer No, such that

+0

L exp- P(x)(s-t) - •y(s )np(x)I h(x) dx

> jlj!I V n > N (123)

Proof: Let F n(x) be the integrand of the left-hand side of (123)

Then, for fixed x

lim F (x) = h(x)
n

By Fatou's Lemma ([24]. [Z5])

Uir inf Fdx > im Fndx
n n

= *h 1 1

L

* ,
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Choose N0 , such that for m > N 0

r=-
mdx > lir inf fFdx - 11hlihl

Then

dx > h ,L -Vm>

Proof of Theorem 9: The proof of this result requires some straight-

forward but rather lengthy computations. Thus, we shall only sketch

the proof, leaving the details to the interested reader.

- Consider the infinite sum

dco) = f exp - 2q(t) t [21(Znn - m(u,t)At)

+ (ZnTT - m(u, t) 2 px )(u) du

Using (120) , we have
e 2

d(_)< exp- nq(Zrt- 20) K( '&t • exp I lk( A ( 2nn+

n#0 q(t) At Zq(t) It 2q(t)I q(t)

We now note that w(t) is a continuous random process, and, therefore,

0
we assume that we are given a continuous sample path, w (t) . We

then choose a 6> 0 , K 0 > 0 ,k 0 >0, such that

0 00
K( ) K

Z)q

.
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1 Z,01 <_ n/2.itt

for all .Xt< 6 (here Zyt is the value for the particular sample path

0w (t) selected). Then. for At< 6.

2 2 2
V0(2n-1n"r -I(Z-n" + 1)

d(Ayt) < K exp q(t-t2 2 exp k q(t)

(124)

and for A t < min(6,q(t)/2k0 ) , the right hand side of (124) is finite.

Examining equation (119) , we can write

- c(~01 L Cn(•

A•t cn 0 CA( y°)

1 d(.%y) y
11 

C

e.3 - -q(t) Irm(u, t) At - 26yt m(u. t) P(xlt(u) du

Taking a sequence [at trr=1 decreasing to zero and using Lemma 5,

we see that there is an R0 such that

e q) - r(u, t0 At r A 2•t(r) mlu, t) Pxltll)(u) d r

Vr>_ R 0
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whe re

A y (r) =(m(x(t).t) Atr + q(t) A rwt mod Z

and

0 0 0
Ar~t = wt +At+ ) - w(t)

Then, for r> RO

cn(Ayt (r) Zd(Xy t (r) (15

At r rOcOA t()A

Using (124) , it can easily be shown that for any s > 0, there

exists a positive integer r( c) such that

1 Cn(AyO(r) )
<0 y V r> r(e)

10
rAt

Thus

A t-.0 A t" n0co(A vtO) = 0

0

for any continuous sarnple function w

To prove (122) , wc. use the assumptions that Px(t) Avy(Ct [3) is

II _A

0 .

bounded for all :,I and a . Let M be an upper bound. Then rewriting

equation (118) for the particular sample path chosen, we have
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Px(t) -AY P~)IAx

rAO 0rc
+ I +• cr/Co Px(t) Iiy t(O'LI yt)

+ ~ r#0

1~~~ PPc),~tc~~t -t-L PXAyIA (cxr'Thus

2M[I %ICO 0 L

2M &- 0 o(AtJ) V >, > 0

We note that Theorem 9 may still be true even if equation (120)

is not satisfied. An examination of the proof shows that all we require

is the following: let

Is(Ux 2) . 0 e "-imZ(u t)-0 m(u,t) Px(t) (u) du

Then we must have
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n~Ipr2ý' 0 0i•n"T( 'rM - ýAt (Z-ntT + A'y )

Aye [Ft (2n(Aay)
exp "'t) At q(t) " q(t) = olAt )

-a, 
Yx, > 0 (1126)

-' A .sr instance

KZ(S+c)ri !Z'g • •e + K3g r

for given c K1 . Kz • K3 which depend only on a and are bound-

ed as OL - 0 will satisfy (126) Ti,as, for example, Theorem 9 holds

if m i•s linear and Px(t) is normal.

k


